Sizing Things Up: Specifications Compared

Thirty-two high-IPC cores in one package sounds promising. But how does the best ThunderX2 compare to what AMD, Qualcomm and Intel have to offer? In the table below we compare the high level specifications of several top server SKUs.

Comparison of Major Server SKUs
AnandTech.com Cavium
ThunderX2
9980-2200
Qualcomm
Centriq 2460
Intel
Xeon 8176
Intel
Xeon 6148
AMD
EPYC 7601
Process Technology TSMC
16 nm
Samsung
10 nm
Intel
14 nm
Intel
14 nm
Global Foundries
14 nm
Cores 32
Ring bus
48
Ring bus
28
Mesh
20
Mesh
4 dies x 8 cores
MCM
Threads 128 48 56 40 64
Max. number of sockets 2 1 8 4 2
Base Frequency 2.2 GHz 2.2 GHz 2.2 GHz 2.4 GHz 2.2 GHz
Turbo Frequency 2.5 GHz 2.6 GHz 3.8 GHz 3.7 GHz 3.2 GHz
L3 Cache 32 MB 60 MB 38.5 MB 27.5 MB 8x8 MB
DRAM 8-Channel
DDR4-2667
6-Channel
DDR4-2667
6-Channel
DDR4-2667
6-Channel
DDR4-2667
8-Channel
DDR4-2667
PCIe 3.0 lanes 56 32 48 48 128
TDP 180W 120 W 165W 150W  180W
Price $1795 $1995 $8719 $3072 $4200

Astute readers will quickly remark that Intel's top of the line CPU is the Xeon Platinum 8180. However that SKU with its 205W TDP and $10k+ price tage is not comparable at all to any CPU in the list. We are already going out on a limb by including the 8176, which we feel belongs in this list of maximum core/thread count SKUs. In fact, as we will see further, Cavium positions the Cavium 9980 as "comparable" to the Xeon Platinum 8164, which is essentially the same part as the 8176 but with slightly lower clockspeeds.

However, it terms of performance per dollar, Cavium typically compares their flagship 9980 to the Intel Xeon Gold 6148, against which the pricing of Cavium's CPU is very aggressive. Many of Cavium's benchmarks claim that the fastest ThunderX2 is 30% to 40% ahead of the Xeon 6148, all the while Cavium's offering comes in at $1300 less. That aggressive pricing might explain the increasingly persistent rumors that Qualcomm is not going to enter the server market after all.

When looking at the table above, you can already see some important differences between the contenders. Intel seems to have the most advanced core topology and the highest turbo clockspeed. Meanwhile Qualcomm has the best chances when it comes to performance per watt, and has already published some benchmarking data that underlines this advantage.

Similar to AMD's EPYC, Cavium's ThunderX2 is likely to shine in the "sparse matrix" HPC market. This is thanks to its 33% greater theoretical memory bandwidth and a high core/thread count. However as we've seen in the case of AMD's design, EPYC's L3-cache is slow once you need data that is not in the local 8 MB cache slice. The ThunderX2, by comparison, is a lot more sophisticated with a dual ring architecture, which seems to be similar to the ring architecture of the Xeon v4 (Broadwell-EP). According to Cavium, this ring structure is able to offer up to 6 TB/s of bandwidth and is non-blocking.

This ring architecture is connected to Cavium's Coherent Processor Interconnect (CCPI2 - at the top of the picture), which runs at 600 Gb/sec. This interconnect links the two sockets/NUMA nodes. Also connected to the ring are the SoC's 56 PCIe 3.0 lanes, which Cavium allocates among 14 PCIe "controllers.". These 14 controllers can, in turn, be bifurcated down to x4 or x1 as you can see below.

SR-IOV, which is important for I/O virtualization (Xen and KVM), is also supported.

ThunderX2: Cavium Is Back Cavium's "New" Core: Vulcan
Comments Locked

97 Comments

View All Comments

  • Davenreturns - Wednesday, May 23, 2018 - link

    In the spec table for the AMD EPYC 7601 you have max sockets 4 and PCIe 3.0 lanes as 64. I thought the max sockets was 2 and that the total number of PCIe 3.0 lanes was 128 (64 in a dual socket machine).
  • davegraham - Wednesday, May 23, 2018 - link

    max sockets is 2 and PCIe lanes is 128 (64 from each 7601 for a combined total of 128; remember, each 7601 has 128 PCIe lanes by themselves. 64 from each are ganged together for IF in a 2P system).
  • davegraham - Wednesday, May 23, 2018 - link

    *are not *is
  • Davenreturns - Wednesday, May 23, 2018 - link

    But in a single socket motherboard system, the total PCIe lanes available from one EPYC processor is 128 which I think we are both saying is correct.
  • Davenreturns - Wednesday, May 23, 2018 - link

    The reason I think these two corrections are important and should be addressed by the author is the way the players in the market are competing. The table should read 128 PCIe lanes and 2 sockets max for EPYC. One only needs to look at AMD's EPYC One socket page to understand why it is important.

    https://www.amd.com/en/products/epyc-7000-series-1...

    The page is filled with marketing trying to convince customers that you are actually getting a two socket server in just one socket. And yes 128 PCIe lanes are available to the customer in these one socket products as part of the reasoning.

    The max number of sockets is also important. AMD and probably Cavium are both arguing that 90% of the market only needs 1 or 2 sockets. Intel doesn't agree and provides 4 or more socket configurations.

    The one socket argument centers around the I/O and memory channels available in the AMD processor. Even though the table just might have typos, reviewers around the web had a hard time believing that a single chip offered 128 lanes of PCIe connectivity and I found a lot of misinformation. It continues today.
  • DanNeely - Wednesday, May 23, 2018 - link

    AFAIK even for intel 1/2 socket machines are around 90% of their sales. They're just selling enough total server chips in total that catering to the sliver of the market that does want 4/8way configurations is still worth their time.
  • Arnulf - Sunday, May 27, 2018 - link

    Profit margins in that market segment are likely to be way higher so it's worth it for Intel as long as there is no competition, forcing prices downwards.
  • Ryan Smith - Wednesday, May 23, 2018 - link

    You are correct. Thanks for pointing that out.
  • Davenreturns - Wednesday, May 23, 2018 - link

    Thanks so much, Ryan.
  • vanilla_gorilla - Wednesday, May 23, 2018 - link

    "This is because the customers who have invested in expensive enterprise software (Oracle, SAP) are less sensitive to cost on the hardware side, so they are much less likely to change to a new hardware platform."

    I don't really follow the logic here. Just because you spend a lot more money on software doesn't mean you wouldn't try to save money on hardware. You don't only focus on one related expense because it's larger.

Log in

Don't have an account? Sign up now